Macromolecular networks and intelligence in microorganisms
نویسندگان
چکیده
Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity - particularly activity of the human brain - with a phenomenon we call "intelligence." Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as "human" and "brain" out of the defining features of "intelligence," all forms of life - from microbes to humans - exhibit some or all characteristics consistent with "intelligence." We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo.
منابع مشابه
Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملThe Optimal Placement of Distributed Generation (DG) to Improve the Voltage Profile and Reduce Losses in Radial Distribution Networks Using PSO
Voltage profile and losses are important factors in a distribution network in which there arevariety of ways to improve them. In this paper, distributed generation (DG) is used as a solutionto improve the above characteristics. Backward/Forward Sweep load flow algorithm is used dueto the inefficiency of usual load flow algorithms because of high R/X ratio and their lack ofconvergence in distrib...
متن کاملCrack Detection of Fixed-Simply Supported Euler Bernoulli Beam Using Elman Networks
In this paper, the crack detection and depth ratio estimation method are presented in beamlikestructures using Elman Networks. For this purpose, by using the frequencies of modes asinput, crack depth ratio of each element was detected as output. Performance of the proposedmethod was evaluated by using three numerical scenarios of crack for fixed-simply supportedbeam consisting of a single crack...
متن کاملEffect of Intelligent Vehicle Networks On Roadways Safety
Most accidents happens because of lack of Visibility and not Driver’s reaction on time whenan accident occurs. Increasing required Time for driver’s reaction caused to decreasingaccidents on roadways .intelligent vehicle networks brings enough time for reaction by sendingalert and alternate messages to vehicles on roadway. Main propose in this paper is aroundmodulation on Reception interval Saf...
متن کاملWhole Cell Imprinting in Sol-Gel Thin Films for Bacterial Recognition in Liquids: Macromolecular Fingerprinting
Thin films of organically modified silica (ORMOSILS) produced by a sol-gel method were imprinted with whole cells of a variety of microorganisms in order to develop an easy and specific probe to concentrate and specifically identify these microorganisms in liquids (e.g., water). Microorganisms with various morphology and outer surface components were imprinted into thin sol-gel films. Adsorptio...
متن کامل